Top Five answers to RF and 5G new radio questions

Top Five answers to RF and 5G new radio questions


In this blog top five questions about the relationship between radio frequency (RF) and the new radio access technology 5G New Radio (NR) by 3GPP are answered. 5G is driving the boundaries of wireless communications by enabling use cases that rely on ultra-fast speeds, exceptionally low latency, and incredibly high reliability. 5G NR is designed to become the standard for 5G networks worldwide.

In comparison to 4G which RF frequency bands are used by 5G?

5G technologies extend farther than just serving mobile broadband and offer key advancements that enable a much wider range of applications. 5G frequency bands are also being made available to support applications as seen in figure 1. 5G NR includes several low and mid-frequency bands in the sub-7 GHz range, defined as FR1, as well as higher frequency bands above 24 GHz, defined as FR2/mmWave. 5G frequency includes all previous cellular spectrum and additional spectrum in the sub-7 GHz frequency range and beyond. A key reason that additional spectrum is being made available is to address the overcrowding in sub-7 GHz bands and to overcome the physical limitations associated with throughput and bandwidth. For example, 4G bands accounted for up to 20 MHz of bandwidth whereas 5G bands now allow up to 400 MHz of bandwidth per channel.

What tasks come along with mmWave?

The term millimeter wave (mmWave) refers to a specific part of radio frequency (RF) spectrum with truly short wavelengths from 24.25 GHz to 52.6 GHz as specified by 5G 3GPP. An advantage is that the use of mmWave will greatly increase the amount of 5G bandwidth available since this spectrum was mostly unused until now. Additionally, mmWave can transfer data even faster, even though its transfer distance is shorter. Plus, mmWave bands are less crowded. In contrast, lower frequencies are more heavily congested with TV and radio signals, as well as with current 4G LTE network signals which typically sit between 700 MHz and 3,000 MHz.

However, mmWave spectrum requires strict line-of-sight between user equipment (UE) and radio antennas. Any obstacle, or passive obstruction like highway signs in front of cell sites, trees, or buildings as well as moving objects such as cars, have the potential to degrade or block a 5G FR2 signal (see figure 2).


How is 5G signal degradation reduced by massive MIMO (mMIMO) and beamforming?

The technology multiple input, multiple output (MIMO) is deployed throughout legacy 4G/LTE networks whereby radio transmitters are equipped with multiple antenna ports that enable multiple data streams to be transmitted to user equipment at the same time. MIMO is used to double (2x2 MIMO) or quadruple (4x4 MIMO) throughput performance for users connected to a cell site.
Massive MIMO (mMIMO) is an extension of MIMO and increases the number of antennas to a 64-transmit/64-receive (64T64R MIMO) configuration. This results in mobile cell sites with higher throughput and improved efficiency.
Beamforming is a subset of mMIMO and as these new technologies come into play, we often see some confusion between the two terms. Beamforming is a signal processing technique that uses the multiple antennas available with mMIMO to create a focused signal (or beam) between an antenna and specific user equipment as seen in figure 3. Signals can be controlled by modifying the magnitude and phase giving the ability for the antenna to focus on specific users.

This advanced RF technology is key for 5G and especially for mmWAVE bands because it solves the line-of-sight problem by steering signals around objects and can even bounce signals against building walls to reach user equipment.


Why 5G mid-bands are essential to speed up 5G deployments?

5G can be a challenging technology to deploy, however mid-band spectrum in the 1 GHz - 7 GHz frequency range is considered ideal for 5G as it strikes the perfect balance between coverage and throughput. The 5G community finds the 3.3 GHz to 3.8 GHz mid-bands especially appealing because this will enable most countries to have a dedicated 5G band in the sub-7 GHz range.

New 5G radio equipment enables Massive MIMO (mMIMO) and beamforming at 3.5 GHz. Initially, beamforming was available only within higher mmWAVE bands. Now radio equipment vendors are enabling beamforming for 5G mid-bands as well, making those bands more appealing. These new 5G mid-bands make rollouts easier and accelerate the race to 5G. Spectrum auctions are being held to acquire these new bands around the world and prospective leading mobile operators will need to win these coveted 5G mid-bands.

What is TDD and why is it critical for 5G?

Time Division Duplexing (TDD) is a technique to emulate full-duplex communication over a half-duplex communication link by transmitting the downlink (DL) and receiving the uplink (UL) at the same frequency but using synchronized time intervals as shown in figure 4. The UL and DL are separated by a guard period to avoid overlapping of the communication channels. Due to advanced technology, the switching is done within milliseconds and therefore fast enough for low latency 5G scenarios. The advantage of this technique is that it excels in spectral efficiency and can deliver improved latency results.


With 5G, technologies are quickly evolving. Engineers are pushing the boundaries of RF by using a single frequency and offering a true full-duplex communication, which means both the uplink and downlink operate at the same frequency and at the same time. To achieve 5G full-duplex on the same frequency, 5G NR uses a procedure called “echo-canceling” where end-customers transmit and receive signals simultaneously without any echo or self-interference. With voice calls, the transmitted signal is cancelled directly on each receiver enabling two people to speak at the same time without any overlap.

by Danny Sleiman/EXFO

Download Infographic

Related Posts

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *