Testing Handovers Between LTE and 3G cdma2000/1xEV-DO Cellular Networks

Application Note

Agilent Technologies
Why Test Handovers Between LTE and Third Generation cdma2000/1xEV-DO Cellular Networks?

Section 1. Introduction

The global telecommunications market is witnessing a paradigm shift in demand as mobile data revenues surpass voice-based revenues in most western countries. Wireless network operators are focusing on expanding revenues in broadband services, where wireless technologies are perceived by users in the light of cable- and DSL-based broadband wired access. The rapid growth of mobile broadband is driven by demand for the latest devices, applications and services, which enable users to access any type of content on the move. This is driving up data usage on mobile networks at a tremendous rate, and operators need to respond with bandwidth availability, which in turn provides the driving force behind the development of evolved 3G and 4G systems such as 1xEV-DO revision A/B and LTE.

Long Term Evolution (LTE) is the project name given by 3GPP to the evolution of the UMTS 3G radio standards. The work on enhancing the original UMTS Terrestrial Radio Access (UTRA) continues in Release 8 of the 3GPP standards with enhancements to High Speed Packet Access (HSPA), but in addition Release 8 includes LTE, an entirely new air interface based on OFDM technology. The formal name for LTE is the Evolved UMTS Terrestrial Radio Access (E-UTRA) but it is more widely known by its project name of LTE. Offering higher data rates and lower latency for the user, a simplified all-IP network for the operator and improved spectral efficiency, E-UTRA – or LTE – promises to provide many benefits. In many cases, operators who previously delivered services using 3GPP2 network technologies – cdma2000 for data and voice and 1xEV-DO for enhanced data – have chosen LTE as their next-generation option. While this looks like a step towards a worldwide standard for the future, it gives them some immediate problems with the integration of new and legacy networks.

LTE as part of the cellular infrastructure

LTE is an all-IP system, designed primarily to provide high-speed data services. Therefore, during network build-out, and until operators choose to implement IP-based voice services, LTE networks will utilize 2G and 3G as an underlying infrastructure for voice calls, and for data services where no LTE service is yet provided. In normal operation, the mobile device (User Equipment, or UE) is required to scan for neighbor cells and generate reports which are used as a basis for cell selection and handover decisions. The processes involved are very demanding for today’s UEs, which must also multi-task a large number of other applications, making heavy demands on processor power. The consequence of inadequate UE response times can be slow (or no) handover, and poor user experience such as dropped connections and frozen applications.

Industry research predicts that LTE is likely to experience its most rapid growth from 2012, when the majority of operators launch their networks and a unified approach to delivering voice communications and rich services such as video telephony over LTE become available.
Because LTE coverage will not be pervasive, testing handover capability between different radio access technologies (RAT) is critically important in the verification of UEs. For a positive end-user experience UEs need to transition smoothly between these RATs, which leads operators to increase their focus on testing the real-world performance of each device before deployment on their networks. Such performance testing goes well beyond the more traditional conformance tests defined by the industry’s standards bodies.

Compliance tests are used across the development cycle for cellular products. Sensitivity, spectral and modulation quality measurements are traceable to techniques defined by industry standards bodies. The 3GPP core specifications are necessary to design an LTE UE, and conformance tests define how to measure compliance with these specifications. Organizations such as the GCF (Global Certification Forum, an active partnership among network operators) and PTCRB (originally named PCS Type Certification Review Board – for North American network operators) govern the certification process, setting standards and accrediting a global network of laboratories to undertake conformance testing. GCF and PTCRB test regimes, operator test plans, performance and interoperability test have grown dramatically with newer radio formats and more capable UEs. Equipment makers build their design verification, pre-conformance and regression test plans to enable products to move smoothly from the development lab to production in the shortest possible time.

Conformance test might be taken as an industry requirement – ensuring the UE supports a level of functionality and does not cause a problem on the system or to other users – where performance test gives the UE manufacturer the opportunity to differentiate their device based on better user experience: application speed, battery life and generally how the UE fulfills expectations. Inter-RAT handovers are part of both, and assume different importance depending on what the UE is currently doing. If it’s idle (not using network resources), conformance issues are the main concern. If, however, the user has a data-hungry application active, performance issues become much more important. In idle mode, network selection decisions are made mainly by the UE, and transmitted to the network. Where the UE has an active data connection, the network will decide the transmission channel, based on its own measurements and neighbor cell measurement data returned from the UE.

A second criterion for Inter-RAT handover is the need for a voice service. Since LTE is a packet-only service, with no provision for the circuit-switched voice connection that is normal in earlier systems, making or receiving a voice call will not be part of an LTE service until standards for the support of voice are implemented. Meantime, many operators are investing in LTE alongside existing voice networks which offer more extensive coverage. In this scenario it makes sense to use the LTE connection for data and the existing network for voice.
Network evolution in the “GSM” world

For operators in much of the world, where current networks are 3GPP GSM/W-CDMA/HSPA, there’s a natural evolution to LTE, and standards-based support for full backward and forward compatibility, both in the radio access network and the core network that lies behind it. The final goal is the inclusion of Voice over Internet Protocol (VoIP) as part of LTE, making it easier for operators to run IP-only networks, and full E-UTRA handover to minimize data connection disruption. In the initial network implementations, losing LTE service or making/receiving a voice call will cause an automatic fall-back to a 3G bearer, where both voice and data service can be provided. Voice service is then provided by a circuit-switched fall-back mechanism, and continuing data service managed by radio resource release and re-assignment messages. The current specifications contain fall-back scenarios all the way back to a basic GSM/GPRS connection if that is the only available network infrastructure. Release 9 includes improvements to circuit-switched fall-back to improve access speed, so there’s no immediate pressure on operators to move forward with LTE voice.

Integrating LTE with “non-GSM” networks

While there is support in LTE for the discovery and measurement of neighbor 3GPP2 cdma2000/1xEV-DO cells at the air interface level, the core LTE and 3GPP2 networks have major differences. The first LTE implementations will support only “non-optimized” handovers where, when the UE loses LTE service it has to acquire 1xEV-DO service. If it has previously been connected to a local 1xEV-DO cell, this may happen relatively quickly, if not it will take much longer. In idle mode this is not really an issue, but during an active data session changing network will cause some disruption. Later implementations will support “optimized” handovers where the UE will be directed to a new serving cell and have much more information about it. To ensure the UE connects to LTE service where it is available, LTE is set as the “preferred service” by the network operator. Voice service is always supplied by a separate cdma2000 radio in the UE, and known as simultaneous voice and LTE (SVLTE); there is no integration of voice and data services, and battery power consumption is compromised. Later LTE specification releases and changes to the 3GPP2 core network will address data and voice integration, with the goal of providing the same final solution as the 3GPP case. However, there is an additional level of complexity as the solution needs to accommodate not just the transition between different physical layer technologies but also interworking between separate core networks. To support this, “tunneling” between 3GPP and 3GPP2 core networks is required. This allows the UE to perform, for instance, pre-registration on the 3GPP2 network while still connected to LTE, speeding the handover process when a cell change is required.
Section 2. So How Do You Do the Testing?

Key to developing LTE UEs for markets worldwide is the ability to test functionality under controlled, repeatable conditions. Consider these three stages: firstly, the UE must correctly interpret and properly respond to protocol messages for each network technology it supports; secondly the protocol messaging must result in the desired connection between the UE and a network; and thirdly the connection must provide the means to access the required service to the satisfaction of a user. A system such as that shown in Figure 2-1 contains the basic elements required for development testing: an environment for running the signalling conformance test scripts to validate adherence to system standards, LTE and 2/3G system emulation to provide the controlled RF environment for both UE characterization and handover testing, the ability to log and analyze protocol messaging amongst the test sets and UE, and an application server to provide the services needed for performance test.

![Figure 2-1. System for UE characterization using Agilent Wireless Communications Test Sets](image)

More comprehensive systems can be used to provide a more complex RF environment for testing – for example additional test sets to provide multiple neighbor cells and both 2G and 3G cells of different technologies, and adding fading simulators to provide a better representation of a true mobile environment.

Signalling conformance test (sometimes called protocol conformance test) uses scripts describing specific test cases and provided by accredited standards organizations, and is the basis for proving interoperability. The device must pass the required cases for each technology that it supports. The TTCN-3 (Test and Testing Control Notation version 3) Environment shown in the figure provides a graphic user interface and software test framework. The tool enables TTCN-3 test cases to be loaded, edited or created, compiled and executed. It includes logging functions and the ability to automate sequences of tests or campaigns.
To enable test case portability from one test platform to another, the functions available to a TTCN-3 programmer through the TRI (TTCN-3 Run Time Interface) have been standardized by ETSI. Manufacturers provide the standard TTCN-3 compiled test cases and an adaptor that connects the standardized TRI interface available to programmers to the unique characteristics of their test instrumentation. This testing is typically done under good RF conditions, and the goal is to demonstrate that the UE responds correctly during a sequence of protocol messages. Pass/fail is determined from the messages and their content – no parametric measurements are made.

In the RF domain, a test system which can provide cell emulation for different technologies, including parametric changes and corresponding measurements, can be used to investigate both the outcome and the timing of inter-RAT handovers. 3GPP standards cover expected Radio Resource Management (RRM) behavior between LTE and earlier releases. In the case of operators moving to LTE from 3GPP2 technologies (cdma2000/1xEV-DO) operators are creating their own requirements and test plans for handover testing, and working with suppliers to ensure new UEs meet the needs of their customers. This type of testing helps UE developers ensure their devices conform to the latest needs of network operators as the various inter-RAT scenarios are fully specified and implemented. Table 3-1 lists example tests that might be specified for Inter-RAT testing.

When the ability to change the RF environment is used in conjunction with a live application server, it can provide valuable insight into the behavior of both application and UE behavior during disruptions caused by changes in the RF channel: for example, RF channel conditions, system handovers, dropped calls, connection speed changes, and interference from other applications.

1xEV-DO and LTE systems can provide multiple simultaneous connections. The application server can also be used to ensure the UE handles multiple processes correctly and in a timely way. Examples might include delivering an SMS during video streaming, downloading multiple files and using an interactive gaming application. This capability gives the developer the view of overall device or application performance that helps differentiate their product from its competitors.
As part of the validation of a new UE, a series of tests of handover capability must be carried out. Intra-technology handover conformance tests are already specified for both LTE and 3GPP2, but operators are specifying their own test plans for handovers between LTE and cdma2000/1xEV-DO. The following table shows some of the test conditions that might be included in such a test plan.

<table>
<thead>
<tr>
<th>Cell selection using GMSS procedures due to LTE system lost</th>
<th>Cell selection due to LTE system lost: previous session on target eHRPD, UE context maintenance timer in high speed gateway running</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cell selection due to LTE system lost: previous session on target eHRPD, UE context maintenance timer in high speed gateway running and session transfer available</td>
</tr>
<tr>
<td></td>
<td>Cell selection to eHRDP cell 2 due to LTE system lost: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway running and session transfer not available</td>
</tr>
<tr>
<td></td>
<td>Cell selection due to LTE system lost: previous session on target eHRPD, UE context maintenance timer in high speed gateway expired</td>
</tr>
<tr>
<td></td>
<td>Cell selection due to LTE system lost: previous session on target eHRPD, UE context maintenance timer in high speed gateway expired and session transfer available</td>
</tr>
<tr>
<td></td>
<td>Cell selection to eHRDP cell 2 due to LTE system lost: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway expired and session transfer not available</td>
</tr>
<tr>
<td></td>
<td>Cell selection due to LTE system lost: no previous session on eHRPD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell selection based on reselection procedures</th>
<th>Cell reselection: previous session on target eHRPD, UE context maintenance timer in high speed gateway running</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cell reselection: previous session on target eHRPD, UE context maintenance timer in high speed gateway running and session transfer available</td>
</tr>
<tr>
<td></td>
<td>Cell reselection to eHRDP cell 2: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway running and session transfer not available</td>
</tr>
<tr>
<td></td>
<td>Cell reselection: previous session on target eHRPD, UE context maintenance timer in high speed gateway expired</td>
</tr>
<tr>
<td></td>
<td>Cell reselection to eHRDP cell 2: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway expired and session transfer available</td>
</tr>
<tr>
<td></td>
<td>Cell reselection to eHRDP cell 2: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway expired and session transfer not available</td>
</tr>
<tr>
<td></td>
<td>Cell reselection: no previous session on eHRPD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LTE Idle to 1xRTT/HRPD idle</th>
<th>Cell selection due to LTE system lost: 1xRTT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cell selection due to LTE system lost: 1xRTT/HRPD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RRC release with MEAS gaps scheduled</th>
<th>RRC Release with Redirection and measurement gaps scheduled: previous session on target eHRPD, UE context maintenance timer in high speed gateway running</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RRC Release with Redirection and measurement gaps scheduled: previous session on target eHRPD, UE context maintenance timer in high speed gateway running and session transfer available</td>
</tr>
<tr>
<td></td>
<td>RRC Release with Redirection to eHRDP cell 2 and measurement gaps scheduled: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway running and session transfer not available</td>
</tr>
<tr>
<td></td>
<td>RRC Release with Redirection and measurement gaps scheduled: previous session on target eHRPD, UE context maintenance timer in high speed gateway expired</td>
</tr>
<tr>
<td></td>
<td>RRC Release with Redirection to eHRDP cell 2 and measurement gaps scheduled: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway expired and session transfer available</td>
</tr>
<tr>
<td></td>
<td>RRC Release with Redirection to eHRDP cell 2 and measurement gaps scheduled: previous session on eHRPD cell 1, UE context maintenance timer in high speed gateway expired and session transfer not available</td>
</tr>
<tr>
<td></td>
<td>RRC Release with Redirection and measurement gaps scheduled: no previous session on eHRPD</td>
</tr>
</tbody>
</table>
Example test details

The following procedure describes a handover test in detail. The UE is first registered to a 1xEV-DO cell, then set up on an LTE cell and handed back and forward between it and the 1xEV-DO cell. The system setup is shown in Figure 3-1.

In order to run the test, you will need a test SIM configured for inter-RAT handovers between LTE and 1xEV-DO, as specified by the network operator concerned, and a matching scenario file for the PXT. One supplier of such SIMs is Gemalto (www.gemalto.com). An example scenario file is included in Appendix 1 of this Note.

![Figure 3-1. System setup for handover testing.](image)

Before following the test procedure, the 8960 and PXT must be pre-configured. The settings are listed below, and can be saved to a register for further use. The naming convention used to describe instrument setup is as follows:

- **[Key name]** represents a hard key on the instrument front panel

- **{Key name}** represents a menu key displayed on the instrument screen
Presetting the instruments

Both the E6621A and the 8960 should be in their ‘preset’ states before executing each test case.

PXT (LTE Cell)
Select [Preset] -> (Preset)

8960 (eHRPD Cell)
Select [Shift] -> [Preset]

LAN IP Addresses

Set the IP addresses of the PXT, 8960, EPC and server PC as follows:

<table>
<thead>
<tr>
<th></th>
<th>IP address</th>
<th>Mask</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXT</td>
<td>192.168.1.60</td>
<td>255.255.255.0</td>
<td>192.168.1.230</td>
</tr>
<tr>
<td>8960</td>
<td>192.168.1.13</td>
<td>255.255.255.0</td>
<td>192.168.1.230</td>
</tr>
<tr>
<td></td>
<td>192.168.1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192.168.1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192.168.1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192.168.1.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPC</td>
<td>See below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server PC</td>
<td>192.168.1.230</td>
<td>255.255.255.0</td>
<td>192.168.1.60</td>
</tr>
<tr>
<td>UE Client PC (by DHCP)</td>
<td>192.168.1.51</td>
<td>255.255.255.0</td>
<td></td>
</tr>
</tbody>
</table>

Pre-test setup

Ensure the latest version of the EPC application is running on the PXT. Using a USB mouse, minimize the E6621A application, right click on the EPC icon (lightning bolt) in the system tray and select ‘Exit’. To launch the latest version, click start, Run..., Browse..., navigate to D:\Program Files\Agilent\E6621A\Tools\eepc.exe and click OK. Right click on the EPC icon and select ‘Setting’. Using the front panel numeric keys or a USB keyboard, set the IP addresses as shown below.
PXT (LTE cell)

- Load Register 1 [Recall] {Recall State} {Register 1}
- Turn off [RF1] and [RF2]

If Register 1 has not already been saved, the following setup needs to be done:

Create the required scenario file using the instructions in Appendix 1. Using a USB mouse, minimize the E6621A application and copy the scenario file onto the PXT from the USB memory stick to the Windows directory D:\Program Files\Agilent\E6621A\LTE-Scenario

Set the PXT as follows:

Select [Mode Setup] -> {EPC} -> {Embed}
Select [Freq] -> {Center (DL)} -> [751] -> {MHz}
Select [Freq] -> {Center (UL)} -> [782] -> {MHz}
Select [Amp] -> {RF1 Amplitude} -> [-31] -> {dBm}
Select [Amp] -> {RF2 Amplitude} -> [-31] -> {dBm}
Select [Atten] -> {RF1 Ref Level} -> [-43] -> {dBm}
Select [Mode Setup] -> {More (2/2)} -> {PHY Settings} -> {UL Resource Allocation} -> {RB Size} -> [20] -> {Enter}
Select [Mode Setup] -> {More (2/2)} -> {Security} -> {Off}
Select [Mode Setup] -> {Call Scenario} scroll to required filename {Load}

Save for future use:
Select [Save] -> {Save State} -> {Register 1}

The saved state includes the above settings, including the scenario file information.

8960 (eHRPD cell)

Ensure the 1xEV-DO Lab App is selected: [SYSTEM CONFIG] -> {Format Switch [F2]} -> IS-856
Ensure the external EPC is disconnected: [LH Menu, MORE] -> {2 of 3} -> {eUTRAN/eHRPD Interworking Info [F6]} -> {Disconnect from External EPC [F2]}

Setup the IP addresses: [SYSTEM CONFIG] -> {Instrument Setup [F1]}
LAN IP Address
Subnet Mask } see Table 1
Default Gateway }
LAN IP Address 2 (Data+)

Set the PDN IP –
[CALL SETUP] -> [LH Menu, MORE] -> {3 of 3} -> {Data Channel Info [F2]} ->
[LHMenu, MORE] -> {2 of 3} -> {IP Addressing Info [F5]} -> {DUT IP Setup [F2]}
DUT IP Address } see Table 1
DUT IP Address 2
Setup the EPC IP: [CALL SETUP] -> [LHMenu, MORE] -> (2 of 3) ->
{E-UTRAN/eHRPD Interworking Info [F6]} -> {Ext EPC IP Addr [F1]} see Table 1

Set up the eHRPD parameters: [CALL SETUP] -> [RHMenu, MORE] -> (2 of 3) ->
{Protocol Rel [F11]} -> A (1xEV-DO-A)

Select [CALL SETUP] -> [RHMenu, MORE] -> (1 of 3) ->
(Application Config [F10]) -> {Session Application Type (Press knob for options)} ->
Alternate EMPA

Select [CALL SETUP] -> [RHMenu, MORE] -> (1 of 3) -> {Cell Power [F7]} -> [-35] -> [ENTER]
{Cell Band} -> US PCS -> [ENTER], (Channel) -> [375] -> [ENTER]

Set the Session Close Timeout to 100 minutes: [CALL SETUP] ->
[RHMenu, MORE] -> (3 of 3) -> {Session Close} -> [100] -> [ENTER]

Setup the Preferred Control Channel Cycle Control: [CALL SETUP] ->
[LHMenu, MORE] -> (2 of 3) -> {Access Network Info [F2]} ->
{Configurable Attributes Info [F1]} -> {Configurable AttributeParms [F1]} ->
(Preferred Control Channel Cycle Control) -> press knob for options -> AT
Specified -> [ENTER]

Set the Sector ID to ‘00800580000000000000000000000000’ and the Color Code
to 26:
Call Setup ->
[CALL SETUP] -> [LHMenu, MORE] -> (2 of 3) -> {Access Network Info [F2]} ->
{Cell Parameters [F2]} ->
Sector ID, Upper (Hex) -> [00800580] -> [ENTER]
Sector ID, Upper Middle (Hex) -> [00000000] -> [ENTER]
Sector ID, Lower Middle (Hex) -> [00000000] -> [ENTER]
Sector ID, Lower (Hex) -> [00000000] -> [ENTER]
Color Code -> [26] -> [ENTER]

Set Authentication: [CALL SETUP] -> [LHMenu, MORE] -> (3 of 3) ->
{Data Channel Info [F2]} -> [LHMenu, MORE] -> (2 of 2) ->
{EAP-AKA’ Auth Info [F1]} -> {Authentication Parameters [F1]}

Authentication State
Authentication Key (K) (Hex) } Set to match your SIM
Operator Variant Parameter Type
Operator Variant Parameter Value (Hex) ->
[E8ED289DEBA952E4283B54E88E6183CA] -> [ENTER]
Randon (RAND) Value (Hex) -> [01234567890123456789012345678900] ->
[ENTER]
Authentication Management Field (AMF) (Hex) -> [B9B9] -> [ENTER]

Save in Register 1 for future recall: [SAVE] -> {Save Register 1} -> [ENTER]
Setup the PXT

- **Recall Register 1**: Press `[Recall]`, (Recall State) -> (Register 1)

- **Check Scenario file**: Under Measurement/Function select `[Mode Setup]`. Under “Base Station Emulator Information”, check the A-Cell Scenario File Name matches the file you created and loaded.

Setup the EPC

- **Check the EPC address settings**: Open the EPC and edit the addresses. Minimize the E6621A application and right click on the EPC running in the icon tray, select ‘Settings’.

 ![EPC Configuration](image)

 Save any changes – press OK

 Right click and ‘Exit’ the application

 Reopen the application for the changes to take effect.

Setup the 8960

- **Select Format**: Press `[SYSTEM CONFIG]` - > {Format Switch [F2]} - > IS-856 - > [ENTER]

- **Recall Register 1**: Recall Register 1 (data previously saved as above): [Recall Register] - > (Recall Register 1) - > [ENTER]

- **Set External EPC IP**: Press `[CALL SETUP]` - > [LHMenu, MORE] - > (2 of 3) - > {E-UTRAN/eHRPD Interworking Info [F6]} - > {Ext EPC IP Addr [F1]} - > 192.168.1.60 - > [ENTER]

Perform handover

- **PXT: Run Scenario file**: Under Display select [BSE]. Under Measurement/Function select [Mode]. Using the soft keys select (Emulator Mode) -> (Run)

- **8960: Idle State**: Press `[CALL SETUP]` - > (Close Session [F4]) to reset to Idle.

- **8960: Connect to the external EPC**: Press `[CALL SETUP]` - > [LHMenu, MORE] - > (2 of 3) - > {E-UTRAN/eHRPD Interworking Info [F6]} - > {Connect to external EPC [F2]}

 Ensure the 8960 external Connection Status is now connected.

 ![External EPC Connection Status](image)

- **8960: Cell Off**: Press `[CALL SETUP]` - > [RHMenu, MORE] - > (1 of 3) - > {Cell Power [F1]} - > [OFF]

Client PC: Connect the device to the USB port

Open the Client Device Manager and wait for it to find the LTE cell.

Connect to the PXT and observe the CON state. Click **Connect WWAN**
PXT: Observe: EPC (Evolved Packet Core) is now active and the UE is connected

Server PC: Note: You may need to disable Windows Firewall in both the server and UE/Client PCs to prevent it blocking the communication between them.

Start a PING session with the UE/Client PC
Open a cmd prompt and send ping -t 192.168.1.51

8960: Cell On
Press [CALL SETUP] -> [RHMenu, MORE] -> {1 of 3} -> {Cell Power [F1]} -> [ON]

PXT: Perform a RRC Connection Release
Under Display select [BSE]. Under Measurement/Function select [Func]. Using the soft keys select (UE Detach) -> (Message Name)
-> (RRCConnectionRelease) -> (Send)

8960: Observe handover
The UE should now be connected to the 8960, whilst the PXT is in idle mode

8960: Perform handover
Press [CALL SETUP] -> [RHMenu, MORE] ->{1 of 3} -> {Cell Power [F1]} -> [OFF]

PXT: Observe handover
The UE should now be connected to the PXT

Server PC: Observe the data connectivity whilst performing handover

Client PC: Disconnect WWAN Session

Disconnected

Connected to LTE BSE
Connected to eHRPD Handover
Connected to eHRPD BSE
Connected to LTE Handover
Connected to LTE BSE
Appendix 1 – Create and store PXT Scenario File

The PXT requires scenario files that provide it with details of the LTE environment and various instrument parameters. The files use the extension "lbmf" and reside in a specific directory on the PXT. The basic file needed for the example in this note is listed on the next page; simply copy the text below into a new file using notepad and check it has no additional characters (e.g., "Page Number xx"). When you are sure it is correct, save it with the correct file extension and note the name. Using N6062A message editor, make the changes required to match your test SIM and save them. When you are satisfied that the SIM and scenario file match, copy it to a USB memory stick for installing in the PXT.
LTE MSG
Description=BasicLTEBSEMessage
Version=2009-03

[RRC MSG]
MIB=BCCH-BCH-Message,690C43
SIB1=BCCH-DL-SCH-Message,404C48001010200F0B944C0808104B40
SIB2=BCCH-DL-SCH-Message,00800C523F08080C0C0270000080000000002A0AE5469D044B57CE10C0040300
RRCConnectionSetup=DL-CCCH-Message,60129B3E820F635EF259B0C000010480A0
DL_Auth=DL-DCCH-Message,0801203A900B924EB0F2E575CDCEE6FD52EB232BBA98B11AAB54F4BB1D44E90C57326D723DF9A8
RRCConnectionSetupComplete=DL-DCCH-Message,0600383AEB083B170700
RRCConnectionRelease=DL-DCCH-Message,380000
UseCapabilityEnquiry=DL-DCCH-Message,380000

RRC Reconfiguration=DL-DCCH-Message,201600000493800000000083A48B4381A39BB03270A03EA05B1C419AAB1C

MIB=MasterInformationBlock
SIB1=SystemInformationBlock
SIB2=SystemInformationBlock
SIB3=SystemInformationBlock
SIB8=SystemInformationBlock

RRC Connection=rrcConnectionSetup
RRC ConnectionRequest=RRConnectionSetup
RRC ConnectionRequestComplete=RRConnectionReconfiguration
RRC ConnectionSetup=RRConnectionReconfiguration
RRC ConnectionSetupComplete=RRConnectionReconfiguration

RRC Configuration=RRConnectionReconfiguration
RRC ConfigurationComplete=RRConnectionReconfiguration

RRC UpLink=RRConnectionReconfiguration
RRC DownLink=RRConnectionReconfiguration

RRC Connection=rrcConnectionSetup
RRC ConnectionRequest=RRConnectionSetup
RRC ConnectionRequestComplete=RRConnectionReconfiguration
RRC ConnectionSetup=RRConnectionReconfiguration
RRC ConnectionSetupComplete=RRConnectionReconfiguration

RRC ConnectionSecure=RRConnectionReconfiguration

RRC Connection=rrcConnectionSetup
RRC ConnectionRequest=RRConnectionSetup
RRC ConnectionRequestComplete=RRConnectionReconfiguration
RRC ConnectionSetup=RRConnectionReconfiguration
RRC ConnectionSetupComplete=RRConnectionReconfiguration

RRC ConnectionSecure=RRConnectionReconfiguration

NAS
SECURITYPROTECTEDNASMESSAGE=0x270000000010742010F0640130184010200245201C109500000000000000E036170605767303836383D0501C0AB01A3583
2508B6F15014013231AABBB00074F
ATTACHACCEPT=0x270000000010742010F0640130184010200245201C109500000000000000E036170605767303836383D0501C0AB01A3583
2508B6F15014013231AABBB00074F
ACTIVATEATEGTESTMODE=0x0F85
CLOSEUETESTMOCOMPLETE=0x0F81
DEACTIVATEATEGTESTMODE=0x0F87
OPENETESTMOCOMPLETE=0x0F83

CUSTOM
RRC ConfigurationComplete=RRConnectionReconfiguration

RELEASE
RRConnectionRelease

ADDNAS
ACTIVATEDATEGTESTMODECOMPLETE=0x0F85
CLOSEUETESTMOCOMPLETE=0x0F81
DEACTIVATEATEGTESTMODECOMPLETE=0x0F87
OPENETESTMOCOMPLETE=0x0F83
Agilent Email Updates
www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

LXI
www.lxistandard.org
LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

AXIe
www.axiestandard.org
AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.

PXI
www.pxisa.org
PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Agilent Channel Partners
www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.

Agilent Advantage Services
Agilent Advantage Services is committed to your success throughout your equipment’s lifetime. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equipment and services more effectively. By sharing our measurement and service expertise, we help you create the products that change our world.

www.agilent.com/find/advantageservices

Americas
Canada (877) 894 4414
Brazil (11) 4197 3500
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
*0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972 3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 131 452 0200

For other unlisted countries:
www.agilent.com/find/contactus

Revised: June 8, 2011

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2011
Published in USA, June 15, 2011
5990-8362EN